Use word embeddings to encode text and a single layer convolutional networks to perform classification.

The text corpus used is movie reviews. Stanford’s preprepared GloVe database will be used to seed our word embeddings. I’ll try three different models:
1) one without pretrained embeddings
2) one with pretrained embeddings and learning on top of it
3) one with pretrained embeddings and no learning on top

Win condition: >87% accuracy on test split (87% is the upper bound for SVM and other traditional ML techniques on this data, see: http://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.pdf

Attributions: machinelearningmastery.com DL for NLP book

polarity dataset v2.0 ( 3.0Mb) (includes README v2.0): 1000 positive and 1000 negative processed reviews. Introduced in Pang/Lee ACL 2004. Released June 2004.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

Import Libraries

from os import listdir
import datetime

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import tensorflow.keras as tk
%load_ext tensorboard

import nltk
from nltk.corpus import stopwords
from collections import Counter
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Embedding, Conv1D, MaxPooling1D, Flatten
from tensorflow.keras.utils import plot_model
from sklearn.metrics import classification_report

Data Engineering

root_dir = 'review_polarity/txt_sentoken/'
neg_train_dir = root_dir + 'neg_train'
neg_test_dir = root_dir + 'neg_test'
pos_train_dir = root_dir + 'pos_train'
pos_test_dir = root_dir + 'pos_test'

Data cleaning function

def load_doc(filename):
    file = open(filename, 'r')
    text = file.read()
    file.close()
    return text

def clean_doc(text):
    words = nltk.word_tokenize(text)
    alpha_words = [w for w in words if w.isalpha()]
    stop_words = set(stopwords.words('english'))
    relevant_words = [w for w in alpha_words if w not in stop_words]
    filtered_words = [w for w in relevant_words if len(w)>1]
    return filtered_words

Build a vocabulary with the training data

def add_doc_to_vocab(filename, vocab):
    doc = load_doc(filename)
    tokens = clean_doc(doc)
    vocab.update(tokens)

def process_docs_to_vocab(directory, vocab):
    i=0
    for filename in listdir(directory):
        if filename.startswith('cv'):
            path = directory + '/' + filename
            add_doc_to_vocab(path, vocab)
            i+=1
    print(f'Processed {i} docs.')
    return vocab
vocab = Counter()
process_docs_to_vocab(pos_train_dir, vocab)
process_docs_to_vocab(neg_train_dir, vocab)
print(len(vocab))
Processed 900 docs.
Processed 900 docs.
36388
def filter_vocab(vocab, min_occurrences=5):
    tokens = [k for k, c in vocab.items() if c >= min_occurrences]
    print(len(tokens))
    return tokens
filtered_vocab = filter_vocab(vocab, 2)
23548
def save_list(tokens, filename):
    if type(tokens[0]) != str:
        tokens = str(tokens)
    data = '\n'.join(tokens)
    file = open(filename, 'w')
    file.write(data)
    file.close()
save_list(filtered_vocab, 'vocab.txt')

Now use our vocabulary to process our data

vocab_set = set(load_doc('vocab.txt').split())
print(len(vocab_set))
23548
def doc_to_line(filename, vocab):
    doc = load_doc(filename)
    tokens = clean_doc(doc)
    vocab_tokens = [w for w in tokens if w in vocab_set]
    return ' '.join(vocab_tokens)

def process_docs_to_lines(directory, vocab):
    lines = list()
    for filename in listdir(directory):
        if filename.startswith('cv'):
            path = directory + '/' + filename
            line = doc_to_line(path, vocab)
            lines.append(line)
    return lines
neg_train = process_docs_to_lines(neg_train_dir, vocab_set)
pos_train = process_docs_to_lines(pos_train_dir, vocab_set)
neg_test = process_docs_to_lines(neg_test_dir, vocab_set)
pos_test = process_docs_to_lines(pos_test_dir, vocab_set)
trainX, trainY = neg_train+pos_train, [0]*len(neg_train)+[1]*len(pos_train)
testX, testY = neg_test+pos_test, [0]*len(neg_test)+[1]*len(pos_test)

print(len(trainX), len(trainY))
print(len(testX), len(testY))
1800 1800
200 200
processed = {}
processed['trainX'] = trainX
processed['trainY'] = trainY
processed['testX'] = testX
processed['testY'] = testY

Next the data will be transformed to be input into a word embedding matrix and deep learning algorithms.

# initiate tokenizer and fit to the training data
tokenizer = Tokenizer()
tokenizer.fit_on_texts(trainX)
# encode and pad the sequences
trainX = processed['trainX']
max_length = max([len(doc.split()) for doc in trainX])
trainX = tokenizer.texts_to_sequences(trainX)
trainX = pad_sequences(trainX, maxlen=max_length, padding='post')
testX = processed['testX']
testX = tokenizer.texts_to_sequences(testX)
testX = pad_sequences(testX, maxlen=max_length, padding='post')
trainY, testY = processed['trainY'], processed['testY']
trainY, testY = np.array(trainY), np.array(testY)
transformed = {}
transformed['trainX'] = trainX
transformed['trainY'] = trainY
transformed['testX'] = testX
transformed['testY'] = testY
vocab_size = len(tokenizer.word_index)+1
print(max_length, vocab_size)
1289 23549

Build Models

# Conv1D using word embeddings with no pretrained embeddings
model_np = Sequential(name='no_pretrain')

model_np.add(
    Embedding(
        len(vocab)+1,
        100,
        input_length=max_length)
)
model_np.add(Conv1D(32, 8, activation='relu'))
model_np.add(MaxPooling1D())
model_np.add(Flatten())
model_np.add(Dense(10, activation='relu'))
model_np.add(Dense(1, activation='sigmoid'))

model_np.summary()
Model: "no_pretrain"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, 1289, 100)         3638900   
_________________________________________________________________
conv1d (Conv1D)              (None, 1282, 32)          25632     
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 641, 32)           0         
_________________________________________________________________
flatten (Flatten)            (None, 20512)             0         
_________________________________________________________________
dense (Dense)                (None, 10)                205130    
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 11        
=================================================================
Total params: 3,869,673
Trainable params: 3,869,673
Non-trainable params: 0
_________________________________________________________________

Import embeddings from GloVe database

# create embedding matrix
vocab = set(tokenizer.word_index.keys())
embedding_matrix = np.zeros((len(vocab)+1, 100))
f = open('glove.6B.100d.txt', encoding='utf-8')
for line in f:
    values = line.split()
    word = values[0]
    if word in vocab:
        index = tokenizer.word_index[word]
        vector = np.asarray(values[1:], dtype='float32')
        embedding_matrix[index] = vector
f.close()
# Conv1D using word embeddings with pretrained embeddings and learning
model_p_l = Sequential(name='pretrain_learnings')

model_p_l.add(
    Embedding(
        len(vocab)+1,
        100,
        input_length=max_length,
        weights=[embedding_matrix],
        trainable=True)
)
model_p_l.add(Conv1D(32, 8, activation='relu'))
model_p_l.add(MaxPooling1D())
model_p_l.add(Flatten())
model_p_l.add(Dense(10, activation='relu'))
model_p_l.add(Dense(1, activation='sigmoid'))

model_p_l.summary()
Model: "pretrain_learnings"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_1 (Embedding)      (None, 1289, 100)         2354900   
_________________________________________________________________
conv1d_1 (Conv1D)            (None, 1282, 32)          25632     
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 641, 32)           0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 20512)             0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                205130    
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 11        
=================================================================
Total params: 2,585,673
Trainable params: 2,585,673
Non-trainable params: 0
_________________________________________________________________
model_p_nl = Sequential(name='pretrained_nolearnings')

model_p_nl.add(
    Embedding(
        len(vocab)+1,
        100,
        input_length=max_length,
        weights=[embedding_matrix],
        trainable=False)
)
model_p_nl.add(Conv1D(32, 8, activation='relu'))
model_p_nl.add(MaxPooling1D())
model_p_nl.add(Flatten())
model_p_nl.add(Dense(10, activation='relu'))
model_p_nl.add(Dense(1, activation='sigmoid'))

model_p_nl.summary()
Model: "pretrained_nolearnings"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_2 (Embedding)      (None, 1289, 100)         2354900   
_________________________________________________________________
conv1d_2 (Conv1D)            (None, 1282, 32)          25632     
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 641, 32)           0         
_________________________________________________________________
flatten_2 (Flatten)          (None, 20512)             0         
_________________________________________________________________
dense_4 (Dense)              (None, 10)                205130    
_________________________________________________________________
dense_5 (Dense)              (None, 1)                 11        
=================================================================
Total params: 2,585,673
Trainable params: 230,773
Non-trainable params: 2,354,900
_________________________________________________________________

Build a Testing Harness

# These the models we will test
model_dict = {}
model_dict['no_pretrained'] = model_np
model_dict['pretrained_learnings'] = model_p_l
model_dict['pretrained_nolearnings'] = model_p_nl
# create Tensorboard callback
log_dir = 'logs/fit/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
tb_callback = tk.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# evaluate models for various
def evaluate_models(model_dict, trainX, trainY, testX, testY, parameters):
    scores = {}
    for model_name, model in model_dict.items():
        # compile the model with the loss and optimizer passed in
        (loss, optimizer, metrics) = parameters
        model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
        # fit to the training data
        model.fit(trainX, trainY, epochs=10, callbacks=[tb_callback])
        # evaluate the model on the test set
        _, acc = model.evaluate(testX, testY, verbose=0)
        scores[model_name] = acc
    return scores
parameters = ('binary_crossentropy', 'adam', ['accuracy'])
trainX = transformed['trainX']
trainY = transformed['trainY']
testX = transformed['testX']
testY = transformed['testY']
scores = evaluate_models(model_dict, trainX, trainY, testX, testY, parameters)
Train on 1800 samples
Epoch 1/10
1800/1800 [==============================] - 31s 17ms/sample - loss: 0.6875 - accuracy: 0.5489
Epoch 2/10
1800/1800 [==============================] - 27s 15ms/sample - loss: 0.4567 - accuracy: 0.7983
Epoch 3/10
1800/1800 [==============================] - 30s 17ms/sample - loss: 0.0762 - accuracy: 0.9750
Epoch 4/10
1800/1800 [==============================] - 25s 14ms/sample - loss: 0.0084 - accuracy: 1.0000
Epoch 5/10
1800/1800 [==============================] - 25s 14ms/sample - loss: 0.0024 - accuracy: 1.0000
Epoch 6/10
1800/1800 [==============================] - 24s 14ms/sample - loss: 0.0014 - accuracy: 1.0000
Epoch 7/10
1800/1800 [==============================] - 24s 13ms/sample - loss: 9.8350e-04 - accuracy: 1.0000
Epoch 8/10
1800/1800 [==============================] - 25s 14ms/sample - loss: 7.6414e-04 - accuracy: 1.0000
Epoch 9/10
1800/1800 [==============================] - 24s 13ms/sample - loss: 6.2068e-04 - accuracy: 1.0000
Epoch 10/10
1800/1800 [==============================] - 26s 14ms/sample - loss: 5.1969e-04 - accuracy: 1.0000
Train on 1800 samples
Epoch 1/10
1800/1800 [==============================] - 27s 15ms/sample - loss: 0.6903 - accuracy: 0.5572
Epoch 2/10
1800/1800 [==============================] - 23s 13ms/sample - loss: 0.6490 - accuracy: 0.6172
Epoch 3/10
1800/1800 [==============================] - 23s 13ms/sample - loss: 0.5591 - accuracy: 0.7511
Epoch 4/10
1800/1800 [==============================] - 22s 12ms/sample - loss: 0.4500 - accuracy: 0.8517
Epoch 5/10
1800/1800 [==============================] - 22s 12ms/sample - loss: 0.3776 - accuracy: 0.9267
Epoch 6/10
1800/1800 [==============================] - 23s 13ms/sample - loss: 0.3310 - accuracy: 0.9633
Epoch 7/10
1800/1800 [==============================] - 23s 13ms/sample - loss: 0.2972 - accuracy: 0.9789
Epoch 8/10
1800/1800 [==============================] - 24s 13ms/sample - loss: 0.2771 - accuracy: 0.9833
Epoch 9/10
1800/1800 [==============================] - 22s 12ms/sample - loss: 0.2597 - accuracy: 0.9872
Epoch 10/10
1800/1800 [==============================] - 24s 13ms/sample - loss: 0.2476 - accuracy: 0.9889
Train on 1800 samples
Epoch 1/10
1800/1800 [==============================] - 17s 10ms/sample - loss: 0.7088 - accuracy: 0.4978
Epoch 2/10
1800/1800 [==============================] - 15s 8ms/sample - loss: 0.6771 - accuracy: 0.5494
Epoch 3/10
1800/1800 [==============================] - 15s 8ms/sample - loss: 0.6016 - accuracy: 0.6311
Epoch 4/10
1800/1800 [==============================] - 15s 8ms/sample - loss: 0.4461 - accuracy: 0.7856
Epoch 5/10
1800/1800 [==============================] - 17s 9ms/sample - loss: 0.2247 - accuracy: 0.9217
Epoch 6/10
1800/1800 [==============================] - 17s 9ms/sample - loss: 0.1055 - accuracy: 0.9822
Epoch 7/10
1800/1800 [==============================] - 15s 9ms/sample - loss: 0.0306 - accuracy: 0.9989
Epoch 8/10
1800/1800 [==============================] - 15s 8ms/sample - loss: 0.0148 - accuracy: 1.0000
Epoch 9/10
1800/1800 [==============================] - 15s 8ms/sample - loss: 0.0088 - accuracy: 1.0000
Epoch 10/10
1800/1800 [==============================] - 15s 8ms/sample - loss: 0.0064 - accuracy: 1.0000
print(scores)
{'no_pretrained': 0.86, 'pretrained_learnings': 0.845, 'pretrained_nolearnings': 0.75}

Test against two real reviews

The best model was the model without using pretrained embeddings, let’s test it against some real reviews. This barely fails my win condition, might do better if I widen the dense layer. The MLP from my last project with BOW beat this.

Note: I used the smallest pretrained GloVe dataset so this might be different if I used a larger one

def pos_or_neg(filename, vocab_set, model, tokenizer):
    test = []
    test.append(doc_to_line(filename, vocab_set))
    test = tokenizer.texts_to_sequences(test)
    test = pad_sequences(test, max_length)
    p = model.predict(test)[0][0]
    if round(p) == 0:
        print('This was a negative review with probability:', round((1-p)*100,2),'%')
    elif round(p) == 1:
        print('This was a positive review with probability:', round((p)*100,2),'%')
model = model_dict['no_pretrained']

The first test is a negative review of the new star wars movie, giving it 1/5 stars.

pos_or_neg('negative_star_wars_review.txt', vocab_set, model, tokenizer)
This was a positive review with probability: 54.22 %

The second test is a positive review of the new star wars moving giving it 3.5/4 stars.

pos_or_neg('positive_star_wars_review.txt', vocab_set, model, tokenizer)
This was a positive review with probability: 67.52 %

Poor performance, much worse than the MLP with BOW. I wonder how it does if I use the pretrained embeddings.

model = model_dict['pretrained_learnings']

The first test is a negative review of the new star wars movie, giving it 1/5 stars.

pos_or_neg('negative_star_wars_review.txt', vocab_set, model, tokenizer)
This was a negative review with probability: 66.39 %

The second test is a positive review of the new star wars moving giving it 3.5/4 stars.

pos_or_neg('positive_star_wars_review.txt', vocab_set, model, tokenizer)
This was a negative review with probability: 70.46 %

Still very poor… I wonder what I need to do to improve this, maybe if I don’t do the vocab filtering at the first step, it seems to say that the word embeddings do better with a little less filtering.

Try 2, no vocab filtering

Data Engineering

root_dir = 'review_polarity/txt_sentoken/'
neg_train_dir = root_dir + 'neg_train'
neg_test_dir = root_dir + 'neg_test'
pos_train_dir = root_dir + 'pos_train'
pos_test_dir = root_dir + 'pos_test'

Data cleaning function

def load_doc(filename):
    file = open(filename, 'r')
    text = file.read()
    file.close()
    return text

def clean_doc(text):
    words = nltk.word_tokenize(text)
    alpha_words = [w for w in words if w.isalpha()]
    return alpha_words
def doc_to_line(filename):
    doc = load_doc(filename)
    tokens = clean_doc(doc)
    return ' '.join(tokens)

def process_docs_to_lines(directory):
    lines = list()
    for filename in listdir(directory):
        if filename.startswith('cv'):
            path = directory + '/' + filename
            line = doc_to_line(path)
            lines.append(line)
    return lines
# processing data without filtering stop words, short words, or by occurences
neg_train = process_docs_to_lines(neg_train_dir)
pos_train = process_docs_to_lines(pos_train_dir)
neg_test = process_docs_to_lines(neg_test_dir)
pos_test = process_docs_to_lines(pos_test_dir)
trainX, trainY = neg_train+pos_train, [0]*len(neg_train)+[1]*len(pos_train)
testX, testY = neg_test+pos_test, [0]*len(neg_test)+[1]*len(pos_test)

print(len(trainX), len(trainY))
print(len(testX), len(testY))
1800 1800
200 200
processed = {}
processed['trainX'] = trainX
processed['trainY'] = trainY
processed['testX'] = testX
processed['testY'] = testY

Next the data will be transformed to be input into a word embedding matrix and deep learning algorithms.

# initiate tokenizer and fit to the training data
tokenizer = Tokenizer()
tokenizer.fit_on_texts(trainX)
# encode and pad the sequences
trainX = processed['trainX']
max_length = max([len(doc.split()) for doc in trainX])
trainX = tokenizer.texts_to_sequences(trainX)
trainX = pad_sequences(trainX, maxlen=max_length, padding='post')
print(max_length)
2331
testX = processed['testX']
testX = tokenizer.texts_to_sequences(testX)
testX = pad_sequences(testX, maxlen=max_length, padding='post')
trainY, testY = processed['trainY'], processed['testY']
trainY, testY = np.array(trainY), np.array(testY)
transformed = {}
transformed['trainX'] = trainX
transformed['trainY'] = trainY
transformed['testX'] = testX
transformed['testY'] = testY
vocab = set(tokenizer.word_index.keys())
vocab_size = len(vocab)+1
print(vocab_size)
36550

Build Models

# Conv1D using word embeddings with no pretrained embeddings
model_np = Sequential(name='no_pretrain')

model_np.add(
    Embedding(
        vocab_size,
        100,
        input_length=max_length)
)
model_np.add(Conv1D(32, 8, activation='relu'))
model_np.add(MaxPooling1D())
model_np.add(Flatten())
model_np.add(Dense(10, activation='relu'))
model_np.add(Dense(1, activation='sigmoid'))

model_np.summary()
Model: "no_pretrain"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_4 (Embedding)      (None, 2331, 100)         3655000   
_________________________________________________________________
conv1d_4 (Conv1D)            (None, 2324, 32)          25632     
_________________________________________________________________
max_pooling1d_4 (MaxPooling1 (None, 1162, 32)          0         
_________________________________________________________________
flatten_4 (Flatten)          (None, 37184)             0         
_________________________________________________________________
dense_8 (Dense)              (None, 10)                371850    
_________________________________________________________________
dense_9 (Dense)              (None, 1)                 11        
=================================================================
Total params: 4,052,493
Trainable params: 4,052,493
Non-trainable params: 0
_________________________________________________________________

Import embeddings from GloVe database

# create embedding matrix
embedding_matrix = np.zeros((vocab_size, 100))
f = open('glove.6B.100d.txt', encoding='utf-8')
for line in f:
    values = line.split()
    word = values[0]
    if word in vocab:
        index = tokenizer.word_index[word]
        vector = np.asarray(values[1:], dtype='float32')
        embedding_matrix[index] = vector
f.close()
# Conv1D using word embeddings with pretrained embeddings and learning
model_p_l = Sequential(name='pretrain_learnings')

model_p_l.add(
    Embedding(
        vocab_size,
        100,
        input_length=max_length,
        weights=[embedding_matrix],
        trainable=True)
)
model_p_l.add(Conv1D(32, 8, activation='relu'))
model_p_l.add(MaxPooling1D())
model_p_l.add(Flatten())
model_p_l.add(Dense(10, activation='relu'))
model_p_l.add(Dense(1, activation='sigmoid'))

model_p_l.summary()
Model: "pretrain_learnings"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_5 (Embedding)      (None, 2331, 100)         3655000   
_________________________________________________________________
conv1d_5 (Conv1D)            (None, 2324, 32)          25632     
_________________________________________________________________
max_pooling1d_5 (MaxPooling1 (None, 1162, 32)          0         
_________________________________________________________________
flatten_5 (Flatten)          (None, 37184)             0         
_________________________________________________________________
dense_10 (Dense)             (None, 10)                371850    
_________________________________________________________________
dense_11 (Dense)             (None, 1)                 11        
=================================================================
Total params: 4,052,493
Trainable params: 4,052,493
Non-trainable params: 0
_________________________________________________________________
model_p_nl = Sequential(name='pretrained_nolearnings')

model_p_nl.add(
    Embedding(
        vocab_size,
        100,
        input_length=max_length,
        weights=[embedding_matrix],
        trainable=False)
)
model_p_nl.add(Conv1D(32, 8, activation='relu'))
model_p_nl.add(MaxPooling1D())
model_p_nl.add(Flatten())
model_p_nl.add(Dense(10, activation='relu'))
model_p_nl.add(Dense(1, activation='sigmoid'))

model_p_nl.summary()
Model: "pretrained_nolearnings"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_6 (Embedding)      (None, 2331, 100)         3655000   
_________________________________________________________________
conv1d_6 (Conv1D)            (None, 2324, 32)          25632     
_________________________________________________________________
max_pooling1d_6 (MaxPooling1 (None, 1162, 32)          0         
_________________________________________________________________
flatten_6 (Flatten)          (None, 37184)             0         
_________________________________________________________________
dense_12 (Dense)             (None, 10)                371850    
_________________________________________________________________
dense_13 (Dense)             (None, 1)                 11        
=================================================================
Total params: 4,052,493
Trainable params: 397,493
Non-trainable params: 3,655,000
_________________________________________________________________

Build a Testing Harness

# These the models we will test
model_dict = {}
model_dict['no_pretrained'] = model_np
model_dict['pretrained_learnings'] = model_p_l
model_dict['pretrained_nolearnings'] = model_p_nl
# create Tensorboard callback
log_dir = 'logs/fit/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
tb_callback = tk.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# evaluate models for various
def evaluate_models(model_dict, trainX, trainY, testX, testY, parameters):
    scores = {}
    for model_name, model in model_dict.items():
        # compile the model with the loss and optimizer passed in
        (loss, optimizer, metrics) = parameters
        model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
        # fit to the training data
        model.fit(trainX, trainY, epochs=10, callbacks=[tb_callback])
        # evaluate the model on the test set
        _, acc = model.evaluate(testX, testY, verbose=0)
        scores[model_name] = acc
    return scores
parameters = ('binary_crossentropy', 'adam', ['accuracy'])
trainX = transformed['trainX']
trainY = transformed['trainY']
testX = transformed['testX']
testY = transformed['testY']
scores = evaluate_models(model_dict, trainX, trainY, testX, testY, parameters)
Train on 1800 samples
Epoch 1/10
1800/1800 [==============================] - 50s 28ms/sample - loss: 0.6898 - accuracy: 0.5211
Epoch 2/10
1800/1800 [==============================] - 40s 22ms/sample - loss: 0.6381 - accuracy: 0.6228
Epoch 3/10
1800/1800 [==============================] - 42s 24ms/sample - loss: 0.4934 - accuracy: 0.8306
Epoch 4/10
1800/1800 [==============================] - 38s 21ms/sample - loss: 0.3728 - accuracy: 0.9361
Epoch 5/10
1800/1800 [==============================] - 43s 24ms/sample - loss: 0.3127 - accuracy: 0.9794
Epoch 6/10
1800/1800 [==============================] - 63s 35ms/sample - loss: 0.2852 - accuracy: 0.9933
Epoch 7/10
1800/1800 [==============================] - 52s 29ms/sample - loss: 0.2680 - accuracy: 0.9961
Epoch 8/10
1800/1800 [==============================] - 45s 25ms/sample - loss: 0.2549 - accuracy: 0.9961
Epoch 9/10
1800/1800 [==============================] - 37s 21ms/sample - loss: 0.2434 - accuracy: 0.9961
Epoch 10/10
1800/1800 [==============================] - 35s 20ms/sample - loss: 0.2328 - accuracy: 0.9961
Train on 1800 samples
Epoch 1/10
1800/1800 [==============================] - 38s 21ms/sample - loss: 0.7264 - accuracy: 0.5206
Epoch 2/10
1800/1800 [==============================] - 36s 20ms/sample - loss: 0.6716 - accuracy: 0.5606
Epoch 3/10
1800/1800 [==============================] - 36s 20ms/sample - loss: 0.6305 - accuracy: 0.6167
Epoch 4/10
1800/1800 [==============================] - 35s 20ms/sample - loss: 0.5691 - accuracy: 0.7161
Epoch 5/10
1800/1800 [==============================] - 36s 20ms/sample - loss: 0.5198 - accuracy: 0.7811
Epoch 6/10
1800/1800 [==============================] - 35s 20ms/sample - loss: 0.4161 - accuracy: 0.8817
Epoch 7/10
1800/1800 [==============================] - 42s 23ms/sample - loss: 0.3487 - accuracy: 0.9383
Epoch 8/10
1800/1800 [==============================] - 46s 26ms/sample - loss: 0.3202 - accuracy: 0.9539
Epoch 9/10
1800/1800 [==============================] - 56s 31ms/sample - loss: 0.2855 - accuracy: 0.9783
Epoch 10/10
1800/1800 [==============================] - 53s 29ms/sample - loss: 0.2682 - accuracy: 0.9822
Train on 1800 samples
Epoch 1/10
1800/1800 [==============================] - 26s 15ms/sample - loss: 0.7000 - accuracy: 0.5411
Epoch 2/10
1800/1800 [==============================] - 26s 14ms/sample - loss: 0.5472 - accuracy: 0.7294
Epoch 3/10
1800/1800 [==============================] - 36s 20ms/sample - loss: 0.3517 - accuracy: 0.8711
Epoch 4/10
1800/1800 [==============================] - 30s 17ms/sample - loss: 0.1878 - accuracy: 0.9589
Epoch 5/10
1800/1800 [==============================] - 29s 16ms/sample - loss: 0.0765 - accuracy: 0.9933
Epoch 6/10
1800/1800 [==============================] - 29s 16ms/sample - loss: 0.0396 - accuracy: 0.9978
Epoch 7/10
1800/1800 [==============================] - 29s 16ms/sample - loss: 0.0141 - accuracy: 1.0000
Epoch 8/10
1800/1800 [==============================] - 25s 14ms/sample - loss: 0.0079 - accuracy: 1.0000
Epoch 9/10
1800/1800 [==============================] - 25s 14ms/sample - loss: 0.0049 - accuracy: 1.0000
Epoch 10/10
1800/1800 [==============================] - 25s 14ms/sample - loss: 0.0036 - accuracy: 1.0000
print(scores)
{'no_pretrained': 0.855, 'pretrained_learnings': 0.725, 'pretrained_nolearnings': 0.69}

Test against two real reviews

The best model was again no pretrained data, but in general the model did worse with no vocab filtering.

def pos_or_neg(filename, vocab_set, model, tokenizer):
    test = []
    test.append(doc_to_line(filename))
    test = tokenizer.texts_to_sequences(test)
    test = pad_sequences(test, max_length)
    p = model.predict(test)[0][0]
    if round(p) == 0:
        print('This was a negative review with probability:', round((1-p)*100,2),'%')
    elif round(p) == 1:
        print('This was a positive review with probability:', round((p)*100,2),'%')
model = model_dict['no_pretrained']

The first test is a negative review of the new star wars movie, giving it 1/5 stars.

pos_or_neg('negative_star_wars_review.txt', vocab_set, model, tokenizer)
This was a positive review with probability: 82.19 %

The second test is a positive review of the new star wars moving giving it 3.5/4 stars.

pos_or_neg('positive_star_wars_review.txt', vocab_set, model, tokenizer)
This was a positive review with probability: 99.99 %

These do in fact perform worse. If I was to do some more model tuning, I might widen the network, and perhaps tokenize the words differently, and return to a more aggressive word cleaning.

Model Tuning

Returning to using the filtered vectors, I’m going to try increasing the size of the dense layer from 10 outputs to 32.

vocab = set(tokenizer.word_index.keys())
max_length = max([len(doc) for doc in trainX])
# Conv1D using word embeddings with no pretrained embeddings
model_np = Sequential(name='no_pretrain')

model_np.add(
    Embedding(
        len(vocab)+1,
        100,
        input_length=max_length)
)
model_np.add(Conv1D(32, 8, activation='relu'))
model_np.add(MaxPooling1D())
model_np.add(Flatten())
model_np.add(Dense(32, activation='relu'))
model_np.add(Dense(1, activation='sigmoid'))

model_np.summary()
Model: "no_pretrain"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_10 (Embedding)     (None, 1289, 100)         2354900   
_________________________________________________________________
conv1d_10 (Conv1D)           (None, 1282, 32)          25632     
_________________________________________________________________
max_pooling1d_10 (MaxPooling (None, 641, 32)           0         
_________________________________________________________________
flatten_10 (Flatten)         (None, 20512)             0         
_________________________________________________________________
dense_20 (Dense)             (None, 32)                656416    
_________________________________________________________________
dense_21 (Dense)             (None, 1)                 33        
=================================================================
Total params: 3,036,981
Trainable params: 3,036,981
Non-trainable params: 0
_________________________________________________________________
# create Tensorboard callback
log_dir = 'logs/fit/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
tb_callback = tk.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# compile and fit the model
model_np.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model_np.fit(trainX, trainY, epochs=20, validation_data=(testX, testY), callbacks=[tb_callback])
Train on 1800 samples, validate on 200 samples
Epoch 1/20
1800/1800 [==============================] - 27s 15ms/sample - loss: 0.6888 - accuracy: 0.5433 - val_loss: 0.6894 - val_accuracy: 0.5350
Epoch 2/20
1800/1800 [==============================] - 23s 13ms/sample - loss: 0.4820 - accuracy: 0.8150 - val_loss: 0.4368 - val_accuracy: 0.8300
Epoch 3/20
1800/1800 [==============================] - 24s 13ms/sample - loss: 0.0552 - accuracy: 0.9933 - val_loss: 0.3682 - val_accuracy: 0.8450
Epoch 4/20
1800/1800 [==============================] - 26s 14ms/sample - loss: 0.0057 - accuracy: 1.0000 - val_loss: 0.4041 - val_accuracy: 0.8450
Epoch 5/20
1800/1800 [==============================] - 24s 13ms/sample - loss: 0.0022 - accuracy: 1.0000 - val_loss: 0.4093 - val_accuracy: 0.8500
Epoch 6/20
1800/1800 [==============================] - 24s 13ms/sample - loss: 0.0014 - accuracy: 1.0000 - val_loss: 0.4185 - val_accuracy: 0.8500
Epoch 7/20
1800/1800 [==============================] - 23s 13ms/sample - loss: 9.9759e-04 - accuracy: 1.0000 - val_loss: 0.4270 - val_accuracy: 0.8450
Epoch 8/20
1800/1800 [==============================] - 24s 13ms/sample - loss: 7.7045e-04 - accuracy: 1.0000 - val_loss: 0.4340 - val_accuracy: 0.8450
Epoch 9/20
1800/1800 [==============================] - 24s 13ms/sample - loss: 6.1603e-04 - accuracy: 1.0000 - val_loss: 0.4406 - val_accuracy: 0.8500
Epoch 10/20
1800/1800 [==============================] - 24s 13ms/sample - loss: 4.9724e-04 - accuracy: 1.0000 - val_loss: 0.4469 - val_accuracy: 0.8500
Epoch 11/20
1800/1800 [==============================] - 23s 13ms/sample - loss: 4.0586e-04 - accuracy: 1.0000 - val_loss: 0.4525 - val_accuracy: 0.8500
Epoch 12/20
1800/1800 [==============================] - 24s 13ms/sample - loss: 3.2924e-04 - accuracy: 1.0000 - val_loss: 0.4579 - val_accuracy: 0.8450
Epoch 13/20
 416/1800 [=====>........................] - ETA: 20s - loss: 1.7017e-04 - accuracy: 1.0000


---------------------------------------------------------------------------

KeyboardInterrupt...                       

The model isn’t getting better after 7 epochs… actually it’s getting worse. What if we try more Conv1D filters

# Conv1D using word embeddings with no pretrained embeddings
model_np = Sequential(name='no_pretrain')

model_np.add(
    Embedding(
        len(vocab)+1,
        100,
        input_length=max_length)
)
model_np.add(Conv1D(50, 8, activation='relu'))
model_np.add(MaxPooling1D())
model_np.add(Flatten())
model_np.add(Dense(20, activation='relu'))
model_np.add(Dense(1, activation='sigmoid'))

model_np.summary()
Model: "no_pretrain"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_11 (Embedding)     (None, 1289, 100)         2354900   
_________________________________________________________________
conv1d_11 (Conv1D)           (None, 1282, 50)          40050     
_________________________________________________________________
max_pooling1d_11 (MaxPooling (None, 641, 50)           0         
_________________________________________________________________
flatten_11 (Flatten)         (None, 32050)             0         
_________________________________________________________________
dense_22 (Dense)             (None, 20)                641020    
_________________________________________________________________
dense_23 (Dense)             (None, 1)                 21        
=================================================================
Total params: 3,035,991
Trainable params: 3,035,991
Non-trainable params: 0
_________________________________________________________________
# create Tensorboard callback
log_dir = 'logs/fit/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
tb_callback = tk.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# compile and fit the model
model_np.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model_np.fit(trainX, trainY, epochs=10, validation_data=(testX, testY), callbacks=[tb_callback])
Train on 1800 samples, validate on 200 samples
Epoch 1/10
1800/1800 [==============================] - 41s 23ms/sample - loss: 0.6801 - accuracy: 0.5644 - val_loss: 0.6755 - val_accuracy: 0.5650
Epoch 2/10
1800/1800 [==============================] - 36s 20ms/sample - loss: 0.2828 - accuracy: 0.9522 - val_loss: 0.3838 - val_accuracy: 0.8400
Epoch 3/10
1800/1800 [==============================] - 36s 20ms/sample - loss: 0.0143 - accuracy: 0.9972 - val_loss: 0.3397 - val_accuracy: 0.8850
Epoch 4/10
1800/1800 [==============================] - 41s 23ms/sample - loss: 0.0027 - accuracy: 1.0000 - val_loss: 0.3611 - val_accuracy: 0.8750
Epoch 5/10
1800/1800 [==============================] - 40s 22ms/sample - loss: 0.0011 - accuracy: 1.0000 - val_loss: 0.3596 - val_accuracy: 0.8900
Epoch 6/10
1800/1800 [==============================] - 39s 22ms/sample - loss: 6.7707e-04 - accuracy: 1.0000 - val_loss: 0.3580 - val_accuracy: 0.8900
Epoch 7/10
1800/1800 [==============================] - 43s 24ms/sample - loss: 4.6366e-04 - accuracy: 1.0000 - val_loss: 0.3691 - val_accuracy: 0.8900
Epoch 8/10
1800/1800 [==============================] - 38s 21ms/sample - loss: 3.1652e-04 - accuracy: 1.0000 - val_loss: 0.3729 - val_accuracy: 0.8900
Epoch 9/10
1800/1800 [==============================] - 39s 21ms/sample - loss: 2.3980e-04 - accuracy: 1.0000 - val_loss: 0.3759 - val_accuracy: 0.8850
Epoch 10/10
1800/1800 [==============================] - 38s 21ms/sample - loss: 1.8581e-04 - accuracy: 1.0000 - val_loss: 0.3785 - val_accuracy: 0.8900





<tensorflow.python.keras.callbacks.History at 0x1a4359c630>

Test against two real reviews

This version with 50 filters and 20 nodes at the fully connected layer beats my win condition.

def pos_or_neg(filename, vocab_set, model, tokenizer):
    test = []
    test.append(doc_to_line(filename, vocab_set))
    test = tokenizer.texts_to_sequences(test)
    test = pad_sequences(test, max_length)
    p = model.predict(test)[0][0]
    if round(p) == 0:
        print('This was a negative review with probability:', round((1-p)*100,2),'%')
    elif round(p) == 1:
        print('This was a positive review with probability:', round((p)*100,2),'%')

The first test is a negative review of the new star wars movie, giving it 1/5 stars.

pos_or_neg('negative_star_wars_review.txt', vocab_set, model_np, tokenizer)
This was a negative review with probability: 65.68 %

The second test is a positive review of the new star wars moving giving it 3.5/4 stars.

pos_or_neg('positive_star_wars_review.txt', vocab_set, model_np, tokenizer)
This was a positive review with probability: 98.65 %

Definitely the best of the CNNs with word embeddings both statistically and against this eye test.